Detecting false testimonies in reputation systems using self-organizing maps
نویسندگان
چکیده
It has been demonstrated that rating trust and reputation of individual nodes is an effective approach in distributed environments in order to improve security, support decision-making and promote node collaboration. Nevertheless, these systems are vulnerable to deliberate false or unfair testimonies. In one scenario, the attackers collude to give negative feedback on the victim in order to lower or destroy its reputation. This attack is known as bad mouthing attack. In another scenario, a number of entities agree to give positive feedback on an entity (often with adversarial intentions). This attack is known as ballot stuffing. Both attack types can significantly deteriorate the performances of the network. The existing solutions for coping with these attacks are mainly concentrated on prevention techniques. In this work, we propose a solution that detects and isolates the abovementioned attackers, impeding them in this way to further spread their malicious activity. The approach is based on detecting outliers using clustering, in this case self-organizing maps. An important advantage of this approach is that we have no restrictions on training data, and thus there is no need for any data pre-processing. Testing results demonstrate the capability of the approach in detecting both bad mouthing and ballot stuffing attack in various scenarios.
منابع مشابه
Bio-inspired enhancement of reputation systems for intelligent environments
Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing ...
متن کاملiCLUB: an integrated clustering-based approach to improve the robustness of reputation systems
The problem of unfair testimonies has to be addressed effectively to improve the robustness of reputation systems. We propose an integrated CLUstering-Based approach called iCLUB to filter unfair testimonies for reputation systems using multi-nominal testimonies, in multiagent-based electronic commerce. It adopts clustering and considers buying agents’ local and global knowledge about selling a...
متن کاملImproving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps
The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed ...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملA clustering approach to filtering unfair testimonies for reputation systems
The problem of unfair testimonies remains an open issue in reputation systems for online trading communities. A common attempt is to use binary ratings to model sellers’ reputation. However, this attempt leads to that the research of tackling unfair testimonies also focuses on reputation systems using binary ratings. In this extended abstract, we propose a two-stage clustering approach to filte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logic Journal of the IGPL
دوره 21 شماره
صفحات -
تاریخ انتشار 2013